Abstract
The type I NAD(P)H dehydrogenase complex (NDH-1) in cyanobacteria is involved in both respiratory and photosynthetic electron transport processes. NDH-1 is also essential for inorganic carbon transport. It has been postulated that NDH-1-dependent cyclic electron flow around PSI energizes CO2 uptake. The genome information of Synechocystis sp. PCC6803 has enabled us to provide an integrative view of the CO2 concentrating mechanism in this organism. In an attempt to dissect the role of the NDH-1 complex, we have constructed single and double mutants of Synechocystis 6803 by disrupting highly homologous ndhD genes in pairs, and have analysed the growth, CO2 uptake activities, and redox levels of P700 and the plastoquinone pool in these mutants under various conditions. We have also determined the membrane localization of this membrane protein. Our studies have revealed that: (i) mutations in ndh genes lead to inhibition of CO2 uptake, rather than HCO3- uptake; (ii) NDH-1 complexes are localized only in the thylakoid membrane; (iii) there are functionally distinct NDH-1 complexes in Synechocystis #6803. Based on these data, we propose a schematic view of the roles of different NDH-1 complexes in cyanobacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.