Abstract

Here we explore inhibitory circuits at the thalamocortical stage of processing in layer 4 of the cat's visual cortex, focusing on the anatomy and physiology of the interneurons themselves. Our immediate aim was to explore the inhibitory mechanisms that contribute to orientation selectivity, perhaps the most dramatic response property to emerge across the thalamocortical synapse. The broader goal was to understand how inhibitory circuits operate. Using whole-cell recording in cats in vivo, we found that layer 4 contains two populations of inhibitory cells defined by receptive field class--simple and complex. The simple cells were selective for stimulus orientation, whereas the complex cells were not. Our observations help to explain how neurons become sensitive to stimulus orientation and maintain that selectivity as stimulus contrast changes. Overall, the work suggests that different sources of inhibition, either selective for specific features or broadly tuned, interact to provide appropriate representations of elements within the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call