Abstract
An aspartate-to-alanine point mutation in the catalytic domain (D853A) of guanylyl cyclase-C (GC-C), the heat-stable enterotoxin (STa) receptor, rendered the enzyme catalytically inactive. Mn2+/Triton X-100-stimulated guanylyl cyclase activity was detected in membranes from COS7 cells overexpressing GC-C but not GC-CD853A. STa treatment of paired cells resulted in cGMP production in those transiently expressing GC-C but not GC-CD853A. GC-C and GC-CD853A showed similar Bmax and Kd values for [125I]STa binding in these cells, indicating that the lack of catalytic activity in the latter was not due to differing expression levels or reduced binding affinity. The involvement of the catalytic domain in aldosteronogenesis was studied in human adrenocortical H295R cells. COS7 and H295R cells infected with vaccinia virus-expressing GC-C and GC-CD853A (VVGC-CD853A) had [125I]STa-binding characteristics akin to those in transfected cells. Immunoblot confirmed that both GC-C and GC-CD853A formed similar higher order oligomers in infected cells. Virus-mediated expression of GC-C in H295R cells revealed concentration-dependent STa-stimulated cGMP formation that was undetectable in VVGC-CD853A-infected cells. STa decreased angiotensin II-stimulated human aldosterone generation in a concentration-dependent manner in vaccinia virus-expressing GC-C-infected cells but not in those infected with VVGC-CD853A. These results demonstrate that a catalytically active guanylyl cyclase is required for the inhibition of aldosteronogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.