Abstract

Multifunctional hydrogels have important applications in various fields such as artificial muscles, wearable devices, soft robotics, and tissue engineering, especially for those with favorable mechanical properties, good low-temperature resistance, and stimuli-responsive capabilities. In the current study, a type of polyacrylamide/sodium alginate/carbon nanotube (PAAm/SA/CNT) double-network (DN) hydrogel was fabricated, which exhibited a high tensile strength of 271.68 ± 6.04 kPa, a favorable conductivity of 1.38 ± 0.17 S·m-1, and a good self-healing ability under heating conditions. In addition, the composite hydrogel exhibited controllable photomechanical deformations under near-infrared irradiation, such as bending, swelling, swimming, and object grasping. To further broaden the applications of the hydrogel in low-temperature environments, calcium chloride (CaCl2) was introduced into such a PAAm/SA/CNT DN hydrogel as an additive. Interestingly, the tensile/compressive strengths as well as elasticity were well-maintained at a temperature as low as -20 °C. In addition, the PAAm/SA/CNT/CaCl2 hydrogel presented excellent conductivity, recoverability, and strain-sensing capability under such extreme conditions. Overall, the investigations conducted in this paper have provided potentially new methods and inspirations for the generation of multifunctional PAAm/SA/CNT/CaCl2 hybrid DN hydrogels toward extended applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call