Abstract

In this research, the performance of functionalized boron nitride nanosheet (BNNS) as a nanostructure membrane with single-atom thickness for the separation of arsenite ions from aqueous solution was examined by molecular dynamics simulation method. The simulated system included a functionalized BNNS placed in an ionic solution containing sodium arsenite, while the external pressures were applied to the system. For the high-water permeability and full ions rejection, the pore of BNNS was functionalized by passivizing pore edge atoms with F and H atoms. Then hydrostatic pressures in the range of 5-100 MPa was applied to the system. During the molecular dynamics simulations, water molecules and arsenite ions were monitored, and some analyses such as water flux, the density profile of water and ion, hydrogen bonds, and radial distribution function were obtained. Results showed that functionalized BNNS was able to conduct water molecules with high permeability through its pore, whereas ions were not able to pass through the pore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.