Abstract

Stability control of nanoparticles within polar and nonpolar liquid interfaces can be influenced by surface effects and molecular-level interactions. This study uses fully atomistic molecular dynamics to investigate the behavior of functionalized silica nanoparticles (NPs) at crude oil/brine interfaces as a function of salt, brine concentration, temperature, and NP surface functionalization. The light crude oil model used in this study comprises aromatics, alkanes and cycloalkanes. Silanized (H-passivated), PEGlyated, and sulfonated functionalized NPs are used to account for hydrophilicity variations. The size effect of the functional groups is evaluated for PEGlyated NPs. The highest contact angles (NP moves toward the oil phase) are observed for monovalent (NaCl) solutions, at higher salt concentrations, and for PEGlyated NPs. The findings indicate that the Young–Laplace equation is still valid at nanoscale for spherically symmetric nanoparticles. The mobility of all NPs indicates that the self-diffusio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.