Abstract

Porous magnetic cellulose/Fe3O4 beads (CFBs), consisting of cellulose as matrix and ferrosoferric oxide, were successfully fabricated from microcrystalline cellulose dissolved in an ionic liquid and further modified with glutaric anhydride. The porous structure of modified magnetic cellulose/Fe3O4 beads (MCFBs) was created by nano-sized calcium carbonate (CaCO3). The resulting MCFBs were well characterized and employed as effective adsorbents for removal of dyes from aqueous solution. The adsorption behaviors indicated that the adsorption kinetics was preferably fitted to the pseudo-second-order kinetic model; whereas the adsorption isotherms were well described by Langmuir model with the maximum adsorption capacity of 1186.8 and 151.8 mg/g for methylene blue (MB) and Rhodamine B (RhB), respectively. Moreover, MCFBs are magnetically separable, thus leading to a range of green-based and promising adsorbents towards organic pollutants with easy recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.