Abstract

The aim of the present work was to develop lysozyme impregnated surface-active nanosponges to maintain its conformational stability and break bacterial cell walls by catalyzing the hydrolysis of 1,4-β-linkages between N-acetyl-d-glucosamine and N-acetylmuramic acid residues present in peptidoglycan layer surrounding the bacterial cell membrane, and for controlling the release of calcium in hypocalcemia condition. Different carbonyl diimidazole cross-linked β-cyclodextrin nanosponges with and without CaCO3 and CMC were prepared by polymer condensation method. The surface-active nanosponges were impregnated by lysozyme due to their ability to adsorb protein. Lysozyme impregnated nanosponges had a monomodal particle size distribution of 347.46±3.07 to 550.34±5.23nm, with a narrow distribution. The zeta potentials were sufficiently increased upon lysozyme impregnation, suggesting stable formulations by preventing aggregation. The in vitro release studies showed controlled release of lysozyme and calcium over a period of 24h. FTIR studies confirmed the impregnation of lysozyme on nanosponges and encapsulation of calcium in nanosponges. Lysozyme formulation showed promising conformational stability by DSC. It can be concluded that the stable nanosponges formulation is a promising carrier for antibacterial protein and preventing depletion of calcium in antibiotic associated hypocalcemic condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.