Abstract

A modified metal–organic framework (MOF) named Al-MIL-53-N=SA-Br was synthesized via a Schiff-base reaction between the MOFs (Al-MIL-53-NH2) and 5-bromo salicylaldehyde. The robust functionalized Al-MIL-53-N=SA-Br was used as a novel spectrophotometric sensor for detecting Hg2+, Co2+, and Al3+ ions. In a wide range of concentrations, the absorption spectral intensity of Al-MIL-53-N=SA-Br increased linearly upon increasing the concentration of Hg2+, Co2+, and Al3+ ions. The limit of detection (LOD) of the proposed Al-MIL-53-N=SA-Br sensor reached 1.52 ppm of Hg2+ ion (7.56 × 10–9 M). Therefore, this study introduces a novel ratiometric Hg2+, Co2+, and Al3+ ions chemosensor. Simple treatment using thiourea or ethylenediaminetetraacetic acid can remove the metal ions from the used sensor and use it many times with a high efficiency. In addition, the Al-MIL-53-N=SA-Br sensor has a high adsorption capacity for these metal ions. The design of the robust Al-MIL-53-N=SA-Br sensor provided high stability, reproducibility, selectivity, high sensitivity, and a facile sensing design. Furthermore, the good absorption spectral stability of Al-MIL-53-N=SA-Br in aqueous media, the broad linear in sensing, and the low LOD of the Hg2+, Co2+, and Al3+ ions show its high potential in determining these ions in real water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call