Abstract
Fiber-like particles are mostly used as basic components of electrorheological and magnetorheological suspensions because of their lower sedimentation rate and higher yield stress. The theoretical approach of the yield stress mainly rests on the interaction between two spherical particles. We analyze the interactions between fibers, taking into account the contribution of friction between fibers. Comparing experimental results to the model we conclude that it is not possible to clearly assess what is the part due to the friction in the increase of the yield stress which, on the other hand, can be explained by the increase of magnetization of the particles due to their lower demagnetization factor. We also show in an experiment between two nickel fibers that the rupture force between the fibers is very sensitive to the shape of their extremity. Besides the particles made of the same material, the core-shell particles made of different materials can also present advantages. We compare electrorheological suspensions made of pure polyaniline to those made of sepiolite and coated with polyaniline. We show that the much higher yield stress obtained with the hybrid particles is essentially due to a higher aspect ratio of sepiolite fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.