Abstract

One of the key components in a proton exchange membrane fuel cell (PEMFC) system is the proton exchange membrane (PEM). PEM not only needs to be highly stable in harsh chemical and physical environment in fuel cells, but also preferably possesses the high proton conductivity at elevated temperature and low humidity conditions to increase the efficiency and simplify the PEMFC power systems. In this paper, the research activity and progresses in the development of heteropolyacids (HPAs) functionalized mesoporous silica as new PEMs for fuel cells are briefly reviewed. HPAs such as H 3 PW 12 O 40 or HPW immobilized within the mesoporous silica are highly effective proton transfer carrier. The progresses made so far in this field demonstrate the promising potential of functionalize mesoporous silica nanocomposites in the development of new PEMs for fuel cells operated at high temperatures (~ 200 °C) and reduced humidity conditions. • HPW–meso–silica nanocomposites are new high temperature proton conductors. • HPW–meso–silica PEMs show high proton conductivity at elevated high temperatures. • Sintered meso–silica shows promising potential as PEMs at 300–400 degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.