Abstract

Recent progress in molecular magnetic resonance imaging (MRI) provides the opportunity to image cells and cellular receptors using microparticles of iron oxide (MPIOs). However, imaging targets on vessel walls remains challenging owing to the quantity of contrast agents delivered to areas of interest under shear stress conditions. We evaluated ex vivo binding characteristics of a functional MRI contrast agent to ligand-induced binding sites (LIBSs) on activated glycoprotein IIb/IIIa receptors of human platelets, which were lining rupture-prone atherosclerotic plaques and could therefore facilitate detection of platelet-mediated pathology in atherothrombotic disease. MPIOs were conjugated to anti-LIBS single-chain antibodies (LIBS-MPIO) or control antibodies (control MPIO). Ex vivo binding to human platelet-rich clots in a dose-dependent manner was confirmed on a 3 T clinical MRI scanner and by histology (p < .05 for LIBS-MPIO vs control MPIO). By using a flow chamber setup, significant binding of LIBS-MPIO to a platelet matrix was observed under venous and arterial flow conditions, but not for control MPIO (p < .001). A newly generated MRI contrast agent detects activated human platelets at clinically relevant magnetic field strengths and binds to platelets under venous and arterial flow conditions, conveying high payloads of contrast to specific molecular targets. This may provide the opportunity to identify vulnerable, rupture-prone atherosclerotic plaques via noninvasive MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.