Abstract

Novel mesoporous silica nanoparticles (LPMSNs) functionalised with degradable poly(2-dimethylaminoethyl acrylate) (PDMAEA) have been developed (PDMAEA-LPMSNs) as nano-carriers for gene delivery. The unique design of PDMAEA-LPMSNs has endowed this system with multiple functions derived from both the organic and inorganic moieties. The cationic polymer unit binds to genetic molecules and undergoes a self-catalyzed hydrolysis in water to form a non-toxic anionic polymer poly(acrylic acid), allowing controlled release of siRNA in the cells. The nanopores of the LPMSNs provide a reservoir for storage and release of chloroquine to facilitate endosomal escape. The PDMAEA-LPMSN composites were characterized by elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid-state 13C magic-angle spinning nuclear magnetic resonance (MAS-NMR), thermogravimetric analysis (TGA), and nitrogen sorption techniques. Their siRNA delivery performance was tested in a KHOS cell line, showing promising potential for co-delivery of genes and drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call