Abstract

Effective uranium extraction from water is essential for the development of nuclear power industry and the protection of human health and environment. Nevertheless, it still remains challenging to realize efficient and cost-effective uranium extraction. Herein, a fast and simple method for the direct fabrication of novel functionalized hydrogen-bonded organic superstructures via molecular self-assembly is reported. The as-constructed flower-like superstructures (MCP-5) can allow the exposure of adsorption sites and facilitate the transport of uranyl ions, while synergism between amino and phosphate groups can realize selective uranium extraction. Consequently, MCP-5 possesses excellent uranium adsorption ability with a high saturated adsorption capacity of 950.52 mg g−1, high utilization rate of adsorption sites and adsorption equilibrium time of simply 5 min in uranium-spiked aqueous solution. Furthermore, MCP-5 offers selective uranium adsorption over a broad range of metal ions. The facile synthesis and low-cost raw materials make it have promising potential for uranium capture. Simultaneously, this study opens a design avenue of functionalized hydrogen-bonded organic material for efficient uranium extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.