Abstract

Angiogenesis is a key feature of cancer development, thus it is a good target for cancer therapy. However, drugs that have been designed to block angiogenesis mainly capture growth factors in circulation, resulting not only in the transient inhibition of tumor progression but also in producing undesirable side effects. Nanoparticular drug delivery systems, on the other hand, may help overcome such drawbacks and improve the efficacy of anti-angiogenic therapies by altering the biodistribution and pharmacokinetics, improving tumor targeting ability, and reducing side effects. In this light, we propose a new approach of anti-angiogenic therapy that combines strategies of long circulating, passive tumor targeting, and anti-angiogenesis efficacy using a new polyelectrolyte complex system that combines LHT7, a previously developed heparin-based angiogenesis inhibitor, with a protamine to form a self-assembling nanocomplex with a mean diameter of 200nm, which is effective for anti-angiogenesis therapy. At first, LHT7 was modified with polyethylene glycol (PEG). We observed that PEG-LHT7/protamine nanocomplex was stable in buffer and slowly dissociated in plasma (9% dissociation for 24h). Compared to the free form of PEG-LHT7, the mean residence time of PEG-LHT7/protamine nanocomplex was found higher (15.9h) with its increased accumulation in tumor. Most importantly, PEG-LHT7/protamine nanocomplex was diffused and extravasated through the dense collagen matrix of the tumor. Thus, the study describes a successful application of functionalized PEG-LHT/protamine nanocomplex that can inhibit angiogenesis with long circulating, passive targeting, and tumor extravasating ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.