Abstract

Graphite nanoplatelets (GNPs) are performed to fabricate GNPs/bisphenol-A epoxy resin (GNPs/E-51) nanocomposites with high thermal conductivity via casting method. And the “two-step” method of methanesulfonic acid/γ-glycidoxypropyltrimethoxysilane (MSA/KH-560) is introduced to functionalize the surface of GNPs (fGNPs). The KH-560 molecules have been successfully grafted onto the surface of GNPs. The thermal conductivities of the fGNPs/E-51 nanocomposites are increased with the increasing addition of fGNPs, and the corresponding thermally conductive coefficient of the fGNPs/E-51 nanocomposites is improved to 1.698W/mK with 30wt% fGNPs, 8 times higher than that of original E-51 matrix. The flexural strength and impact strength of the fGNPs/E-51 nanocomposites are optimal with 0.5wt% fGNPs. The thermal stabilities of the fGNPs/E-51 nanocomposites are also increased with the increasing addition of fGNPs. For a given GNPs loading, the surface functionalization of GNPs by MSA/KH-560 exhibits a positive effect on the thermal conductivities and mechanical properties of the nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.