Abstract

In this article, we highlight the salient issues in the development of lithium-sulfur battery (LSB) cathodes, present different points of view in solving them, and argue, why in the future, functionalized graphene or graphene oxide might be the ultimate solution towards LSB commercialization. As shown by previous studies and also in our recent work, functionalized graphene and graphene oxide enhance the reversibility of the charge-discharge process by trapping polysulfides in the oxygen functional groups on the graphene surface, thus minimizing polysulfide dissolution. This will be helpful for the rational design of new cathode structures based on graphene for LSBs with minimal capacity fading, low extra cost, and without the unnecessary weight increase caused by metal/metal oxide additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.