Abstract

Functionalized graphene oxide nanoparticles (NPs) have emerged as promising nanocarriers for drug delivery in lung cancer therapy. Quercetin and lurbinectedin encapsulated in graphene oxide (GO) NPs are tested for treating A549 lung cancer cells. Spectroscopic analyses show that graphene oxide functionalization creates a transparent, smooth surface for drug loading. Treatment with quercetin/lurbinectedin-loaded GO NPs induces notable cytotoxic effects in lung cancer cells, as evidenced by distinct morphological alterations and confirmed apoptotic cellular death observed through fluorescence microscopy. Additionally, our study highlights the impact of this approach on lung cancer metastasis, supported by qRT-PCR analysis of relative gene expression levels, including p53, Bax, Caspase-3, and Bcl 2, revealing robust molecular mechanisms underlying therapeutic efficacy against A549 and PC9 cell lines. Flow cytometric analyses further confirm the induction of cellular death in lung cancer cells following administration of the nanoformulation. Our findings show that quercetin/lurbinectedin-loaded GO NPs may be a promising lung cancer treatment, opening new avenues for targeted and effective therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.