Abstract

We report a simple preparation of linear polyethylenimine-grafted graphene oxide (LP-GO) conjugates and their efficacy to transfer nucleic acids into the mammalian cells. Graphene oxide (GO), with epoxy functions on its surface, was reacted with different amounts of linear polyethylenimine (lPEI), a non-toxic polymer, to obtain three different positively charged LP-GO conjugates (LP-GO-1 to LP-GO-3), capable of interacting with negatively charged nucleic acids (gel retardation assay) and transporting them efficiently into the cells. The results show that these conjugates not only exhibited considerably higher transfection efficiency but also possessed even better cell viability than lPEI. LP-GO-2, the best system in terms of transfection efficiency, showed improved buffering capacity compared to lPEI and provided sufficient stability to bound DNA against DNase I. Further, LP-GO-2 was used for the sequential delivery of GFP specific siRNA, which resulted in ∼70% suppression of the target gene expression. Intracellular trafficking using fluorescence microscopy revealed that LP-GO-2 conjugate delivered pDNA in the nucleus within 1h of exposure. The results indicate the prospect of using these conjugates as efficient carriers of nucleic acids for future gene therapy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.