Abstract

p -Phenylenediamine (PPD) functionalized graphene oxide (GO) materials (PPDG) were prepared through a one-step solvothermal process and their application as supercapacitors (SCs) were studied. The PPD is not only as the spacers to prevent aggregating and restacking of the graphene sheets in the preparing process but also as nitrogen sources to obtain the nitrogen-doped graphene. The structures of PPDG were characterized by Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) and the results show that the nitrogen-doped graphene was achieved with nitrogen content as high as 10.85 at.%. The field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM) have confirmed that the morphologies of PPDG were loose layered with less aggregation, indicating that PPD molecules, as spacers, effectively prevent the graphene sheets from restacking during the solvothermal reaction. The special loose textures make PPDG materials exhibit excellent electrochemical performance for symmetric SCs with superior specific capacitance (313 F/g at 0.1 A/g), rate capability and cycling stability. The present synthesis method is convenient and may have potential applications as ultrahigh performance SCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.