Abstract

Considerable advances have been made in developing materials that promote wound healing and inhibit scar formation in clinical settings. However, some challenges, such as cumbersome treatment processes and determination of optimal treatment time, remain unresolved. Thus, developing a multifunctional wound dressing with both wound healing and scar inhibition properties is crucial. Here, we present an integrated electrospun fibrous composite membrane (MPC12) for wound healing and scar inhibition, consisting of a quaternized chitosan-loaded inner membrane (PCQC5) and quaternized silicone-loaded outer membrane (MQP12). The inner membrane effectively coagulates blood and promotes wound healing, and the outer membrane moisturizes, resists bacteria, and inhibits scar formation. In vivo evaluation in a rabbit ear model revealed that MPC12 treatment results in faster wound healing and better alleviation of scar hypertrophy than treatment with commercial products (KELO-COTE and MSSG). Our strategy offers an excellent solution for the potential integration of wound healing and scar inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.