Abstract

Cells from most mammalian tissues require an extracellular matrix (ECM) for attachment and proper functioning. In vitro cell cultures therefore must be supplied with an ECM that satisfies both the biological needs of cells used and the technical demands of the experimental setup. The latter include matrix functionalization for cell attachment, favorable microscopic properties, and affordable production costs. Here, modified DNA materials are therefore developed as an ECM mimic. The material is prepared by chemical cross-linking of commonly available salmon sperm DNA. To render the material cell-compatible, it is enzymatically modified by DNA polymerase I to provide versatile attachment points for peptides, proteins, or antibodies via a modular strategy. Different cells specifically attach to the material, even from mixed populations. They can be mildly released for further cell studies by DNase I-mediated digestion of the DNA material. Additionally, neural stem cells not only attach and survive on the material but also differentiate to a neural lineage when prompted. Furthermore, the DNA material can be employed to capture and retain cells under flow conditions. The simple preparation of the DNA material and its wide scope of applications open new perspectives for various cell study challenges and medical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.