Abstract

Among current technologies for hydrogen production as an environmentally friendly fuel, water splitting has attracted increasing attention. However, the efficiency of water electrolysis is severely limited by the large anodic overpotential and sluggish reaction rate of the oxygen evolution reaction (OER). To overcome this issue, the development of efficient electrocatalyst materials for the OER has drawn much attention. Here, we show that organometallic Ni(II) complexes immobilized on the sidewalls of multiwalled carbon nanotubes (MWNTs) serve as highly active and stable OER electrocatalysts. This class of electrocatalyst materials is synthesized by covalent functionalization of the MWNTs with organometallic Ni bipyridine (bipy) complexes. The Ni-bipy-MWNT catalyst generates a current density of 10 mA cm–2 at overpotentials of 310 and 290 mV in 0.1 and 1 M NaOH, respectively, with a low Tafel slope of ∼35 mV dec–1, placing the material among the most active OER electrocatalysts reported so far. Different ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.