Abstract

A simple chemical vapor deposition technique at atmospheric pressure (APCVD) is adopted to synthesize the aligned arrays of functionalized multi-walled carbon nanotubes (AMWCNTs) without using any carrier gas, at 230◦C, 750◦C and 850 ◦C. Camphor (C10H16O) is used as carbon source because this botanical hydrocarbon is chip and abundant which convert the CVD technique to a green method for production of carbon nanotubes (CNTs). The oxygen atoms in camphor oxidize the amorphous carbons and create hydroxyl functional groups in AMWCNTs. The molecular structure of camphor lead to form hexagonal and pentagonal carbon rings which increase the growth rate and alignment of MWCNTs. In this work, AMWCNTs are grown on silicon substrate, copper, and quartz. The synthesized AMWCNTs are characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM). The SEM results show that the deposited CNTs are formed in vertical aligned arrays and each has a functional OH group which is seen in FTIR spectroscopy results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.