Abstract

Microcapsules with tunable mechanical properties are highly desirable in pressure sensitive applications. We report here a facile approach to prepare polyurea/multiwall carbon nanotube (MWCNTs) nanocomposite microcapsules (MICs) with enhanced stiffness. A model compound dimethyl phthalate (DMP) was used as core material. MWCNTs were modified with reactive functional groups namely carboxyl (COOH), amines (NH2), and isocyanates (NCO) to ensure a stronger interface between polymer wall and MWCNTs. Functionalization of MWCNTs was corroborated by Fourier transformed infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was employed to study the surface morphology of MICs. The presence of MWCNTs in the microcapsule wall was confirmed by transmission electron microscopy (TEM). MICs with functionalized MWCNTs show almost 100% increase in stiffness with respect to pristine capsules. All MICs show 92–97 ± 1% encapsulation efficiency. The approach used in this paper can be broadly utilized to tune the mechanical properties of the microcapsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.