Abstract

Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal–organic framework nanovehicle (named as corona-BioMOF) is constructed for improving its precise cancer targeting ability. The designed corona-BioMOF is constructed as the carriers-encapsulated carrier model by inner coated with abundant protein-nanocaged doxorubicin particles and external decorated with high-affinity apoferritin proteins to form the spiky surface for constructing the specific coronal structure. The corona-BioMOF shows a higher affinity and an enhanced targeting ability towards receptor-positive cancer cells compared to that of MOF-drug composites without spiky surface. It also exhibits the hierarchical wrapping pattern-endowed controlled lysosome-specific drug release and remarkable tumor lethality in vivo. Moreover, water-induced surface defect-based protein handle mechanism is first proposed to shape the coronal-BioMOF. This work will provide a better inspiration for nanovehicle construction and be broadly useful for clinical precision nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.