Abstract

Over recent years, many RNA viruses have been “re-discovered”, including life-threatening flaviviruses, such as Dengue, Zika, and several encephalitis viruses. Since no specific inhibitors are currently available to treat these infections, there is a pressing need for new therapeutics. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) represents a validated target being essential for viral replication and it has no human analog. To date, few NS5 RdRp inhibitor chemotypes have been reported and no inhibitors are currently in clinical development. In this context, after an in vitro screening against Dengue 3 NS5 RdRp of our in-house HCV NS5B inhibitors focused library, we found that 2,1-benzothiazine 2,2-dioxides are promising non-nucleoside inhibitors of flaviviral RdRp with compounds 8 and 10 showing IC50 of 0.6 and 0.9 μM, respectively. Preliminary structure-activity relationships indicated a key role for the C-4 benzoyl group and the importance of a properly functionalized C-6 phenoxy moiety to modulate potency. Compound 8 acts as non-competitive inhibitor and its proposed pose in the so-called N pocket of the RdRp thumb domain allowed to explain the key contribution of the benzoyl and the phenoxy moieties for the ligand binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.