Abstract
Here, we describe the unusual self-assembly of amine-terminated oligoglycine peptides into extended two-dimensional sheets in the presence of silver nanowires. The resulting tectomer sheets are shown to have a strong affinity for the nanowires through a charge-transfer interaction as evidenced by X-ray photoelectron spectroscopy. We show that extended assemblies of metal–peptide hybrids offer additional augmentative functionalities; for instance, the tectomer sheets are hydrophobic in nature and act as a protective layer preventing oxidation and degradation of the nanowires when exposed to atmospheric conditions. Moreover, for silver nanowire percolating networks the presence of the peptide markedly increases the overall electrical conductivity through mechanical squeezing of wire–wire junctions in the network. The peptide–metal interface can be controlled by pH stimulus thus potentially offering new directions where silver nanowire assemblies are used for transparent electrodes ranging from antimicrobial...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.