Abstract

Methacrylate-labeled SBA-15 has been successfully synthesized from calcined SBA-15 and commercially available 3-trichlorosilyl propylmethacrylate. This material undergoes efficient thiol–ene “click reaction” with a variety of both thiol and disulfide-containing substrates in aqueous and organic media. The products were thoroughly characterized by a variety of analytical techniques including multinuclear (13C, 29Si) solid-state NMR, TG-DTA, and nitrogen adsorption desorption studies. Disulfide-containing substrates in which the TCEP-mediated reduction of the disulfide bond and its subsequent addition to the methacrylate group anchored in SBA-15 in one-pot were used to synthesize a silica–protein hybrid material composed of biotin-labeled SBA-15 and streptavidin. Electrochemically active material was synthesized from the reaction of ferrocene-containing thiol and the methacrylate-labeled SBA-15. The ease of synthesis for the methacrylate-labeled SBA-15 material together with its ability to undergo efficient chemoselective thiol–ene reaction would make it a very attractive platform for the development of covalently anchored enzymes and sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.