Abstract
In this work we present the successful application of functionalizing Pt nanoparticles (NPs) with hydrophilic organic ligands as a strategy for enhancing their catalytic activity and selectivity. In the first step, Pt NPs were prepared by a colloidal approach and subsequently functionalized in a separate synthesis step with L-proline (PRO). The functionalized NPs were supported onto Al2O3 and investigated as heterogeneous catalysts for the selective hydrogenation of acetophenone. Whereas significant amounts of side products are formed by supported, "unprotected" (ligand-free) NPs, the PRO-functionalized Pt NPs are highly chemoselective even at 100% conversion. Experiments under kinetically controlled conditions reveal that this high chemoselectivity is not accompanied by a loss of catalytic activity. In contrast, an enhanced rate toward the desired product was found for PRO-Pt in comparison to the "unprotected" Pt NPs. This finding demonstrates that the use of ligands in heterogeneous catalysis allows for simultaneous enhancements of activity and selectivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.