Abstract
We have performed a computational study to investigate the cyclosulfurization of the pentagon–pentagon (p–p) junctions in the non-IPR fullerenes C60(D3) and C70(C2v), and also Stone-Wales defective C60 fullerene. Our results indicate the exothermic character of cyclosulfurization processes which can be related to the increase of pyramidalization angle (spherical excesses) and p characters of natural hybrid orbitals of C atoms at the p–p junctions. In fact these lead to the structural strain relief and stability of the cyclosulfurization derivatives of the non-IPR fullerenes. Moreover, the cyclosulfurization reaction of p–p bonds on the C70(C2v) is more energetically favorable than that of C60(D3), due to the higher curvature of carbon sites and the larger values of the p characters of natural hybrid orbitals in the C70(C2v). On the other hand, localization of the excess electrons on the C atoms at the p–p junctions leads to the low tendency of the charged non-IPR fullerenes to cyclosulfurization process. The desulfurization pathway of the exohedral derivatives of C70(C2v) indicates that it is energetically unfavorable for the functionalized fullerenes to break into individual fullerene and sulfur molecules. HOMO–LUMO gaps almost are independent of the number of pentathiepin rings while sensitive to the type of parent fullerene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.