Abstract

nc-Si/SiO2 crystalline semiconductor quantum dots are very attractive as fluorescent labels for developing biosensors integrated with biomedical materials due to their unique physical properties in the visible region of the spectrum. We report on the functionalization of such nanostructures by single-strand short oligonucleotides using the d(20G,20T) system (d is deoxyribonucleotide, G is guanine, and T is thymine) as an example. Oligonucleotides are obtained by chemical synthesis using the solid-phase phosphoramidite technique. Studies using developed methods of Raman spectroscopy of high spectral and spatial resolution are performed on such complexes. The previously unpredicted phenomenon of multiband selective resonant light scattering by isolated molecular groups, caused by the nonradiative transfer of photoexcited electrons, is observed using a system of nc-Si/SiO2 quantum dots functionalized by d(20G,20T) oligonucleotides as an example. The results obtained suggest that the developed approach can be used to study the molecular structure of semiconductor quantum-dot and DNA complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.