Abstract

An increasing quantity of pollutants has been discharged into the aquatic media, posing a serious hazard to public health. To address this issue, a new sorbent material, MXene@i.Carr@MaMb, was developed through the functionalization of the MXene surface using iota-carrageenan (i.Carr), maleic anhydride, and N, N′-methylene bis-acrylamide. This sorbent material was designed to remove thorium (Th (IV)) effectively, uranium (U (IV)), sulfamethoxazole (SMX), and levofloxacin (LEV) from wastewater. The MXene@i.Carr@MaMb composite incorporated significant functional groups, including OH, F, and O from MXene, oxygen and ester sulfate groups from iota-carrageenan (i.Carr), and OH, NH, and CO groups from N, N′-methylene bis-acrylamide, and maleic anhydride, which interacted with the UV (IV), Th (IV), SMX, and LEV pollutants through electrostatic interaction, complexation, and hydrogen bonding. MXene@i.Carr@MaMb composite exhibited excellent sorption capacities for Th (IV) (3.6 ± 0.03 mmol g−1), U (IV) (3.7 ± 0.09 mmol g−1), SMX (5.8 ± 0.03 mmol g−1), and LEV (5.9 ± 0.05 mmol g−1) at 323.15 K. The sorption kinetics and isotherms of radioactive metals and antibiotics can be well-described using pseudo-first-order kinetic models and Langmuir and Sips isothermal equations. This study presented a novel sorbent material for efficiently removing radioactive metals and antibiotics from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.