Abstract

A simple strategy for enzyme immobilization onto homo- and hetero-functionalized multiwalled carbon nanotubes (MWCNTs) is described. Homo-functionalization of MWCNTs can be carried out using an amino-silane compound, i.e., 3-aminopropyl-triethoxysilane (APTES). It is an important silane coupling agent, which promotes interfacial behavior of nanomaterials. Whereas, hetero-functionalization of MWCNTs can be performed using APTES and cross-linking agent glutaraldehyde (GA). Key parameters for the immobilization of an enzyme on MWCNTs are selection of an efficient functionalizing agent, sonication of MWCNTs, enzyme load and enzyme coupling time. The optimal level of these factors is very important to obtain high specific activity and immobilization efficiency of the developed immobilized biocatalyst. Both homo- and hetero-functionalized MWCNTs can be used to develop an efficient immobilized biocatalyst having good operational stability. However, hetero-functionalized MWCNTs are more potent candidate for enzyme immobilization. The present methodology provides very efficient approach for enzyme immobilization on a versatile support to achieve high enzyme selectivity and operational stability for various industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.