Abstract

Multi-walled carbon nanotubes (MWNT) were successfully chemically modified (MWNT-COOH) and reacted with polyethylene glycol (PEG) to prepare nanocomposites. As- prepared kinds of functionalized MWNT (MWNT-g-PEG) were characterized with FTIR, TGA and TEM. Nonisothermal crystallization kinetics of MWNT-g-PEG composites was investigated by differential scanning calorimeter (DSC). The kinetics was analyzed using the Ozawa and Avrami equation modified by Jeziorny. The results showed that the Ozawa approach failed to describe the crystallization behavior of nanocomposites, whereas the modified Avrami analysis could explain the behavior of MWNT-g-PEG nanocomposite only. It is observed that the presence of MWNT hindered the mobility of PEG chains and decreased the overall crystallization rate. It was found that the crystallization behavior of MWNT-g-PEG nanocomposite was strongly affected by the incorporation of MWNT. The data for the nonisothermal crystallization could be analyzed properly by the Avrami equation modified by Jeziorny. The results showed that the presence of MWNT decreased the overall nonisothermal crystallization rate of the PEG chains which were grafted onto the MWNT due to MWNT might act as physical hindrances retarding the mobility of PEG chains and decreased the crystallinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.