Abstract

In this work, a novel composite carrier system for loading essential oils was developed by using tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES) as silica precursors and cetyl trimethyl ammonium bromide (CTAB) as a template, and the resultant aminated mesoporous silica was further chemically modified by polyacrylic acid (PAA). The obtained composite carriers exhibited a high loading capability toward tea tree oil (TTO), and they also significantly improved the release behavior of TTO due to the steric hindrance of silica mesopore and the polymer restriction. Besides, it was found that the release behavior followed the First-Order kinetic model, revealing that the release of TTO was driven by the concentration gradient. In addition, these composite carriers with essential oil-loaded demonstrated remarkable antibacterial performance against E. coli and S. aureus, and they could retain antibacterial performance even after 50 d. Moreover, the antibacterial mechanism was also elucidated with the assistance of nucleic acid and conductivity measurements. Therefore, this work provides a facile and environmentally friendly approach to preparing effective composite carriers for improving the sustained release of essential oils, and the long-term antibacterial performance of these essential oil-loaded composite carriers makes them tremendously potential for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.