Abstract

Functionalization of GO with an amphiphilic block copolymer is designed with an aim to enhance its biocompatibility, however, long copolymer chains can screen the blade effect of GO to sacrifice its antimicrobial activities. To solve this problem, low molecular weight of poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and their block copolymer were respectively introduced onto GO via an isophorone diisocyanate modified GO as a intermediate, followed by a solvent evaporation of an oil-in-water emulsion treatment (SE treatment) to induce block copolymer into polymer micelle via phase separation to refresh the sharp edges of GO. Block copolymer modified GO possessed similar dispersibility and stability to PEG modified GO, and even higher loading capacity of the hydrophobic drug than PHBV modified GO, illustrating its superior properties to homopolymer. PEG, PHBV and their block copolymer modified GO were nontoxic towards ATDC5 cells while cultured for 3 days and compatible with erythrocytes within 8 h. SE treatment enhanced greatly the loading capacity of the hydrophobic drug and the accumulative release reached 91.3% within 24 h. The inhibition zone of the block copolymer modified GO was 14.1 mm and 14.8 mm against E. coli and S. aureus, comparable to that of PEG modified GO. The bacterial reduction rate of the copolymer micelle modified GO was 87.1% and 82.7% towards E. coli and S. aureus, much greater than that of PEG, PHBV and their block copolymer modified GO at a concentration of 1 mg/mL. The antibiofilm capacity of the copolymer micelle modified GO were equal to that of PEG modified, demonstrating its great promise in tissue engineering application for repair of infected tissue defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call