Abstract

This work reports on the photocatalytic activity of tin oxide (SnO2)-doped magnesium (Mg) and fluorine (F) nanoparticles for methyl orange and safranin dye degradation under sunlight irradiation. Nanocatalysis-induced dye degradation was examined using UV-visible spectroscopy and a pseudo-first-order kinetics model. The results indicate that the prepared nanoparticles exhibit superior photocatalytic activity, and the degradation of methyl orange (MO) dye is approximately 82%. In contrast, the degradation of safranin dye is 96% in the same time interval of 105 min. The calculated crystallite size of the SnO2-Mg-F nanocomposite is 29.5 nm, which respects the particle size found in the DLS analysis with a tetragonal structure and spherical morphology affirmed. The optical characteristics were assessed, and their respective bandgap energies were determined to be 3.6 eV. The influence of F in Mg and SnO2 is recognized with the XRD and FT-IR spectra of the prepared particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.