Abstract

The present research is focused on the synthesis of hexagonal ZnO wurtzite nanorods for the decoration of commercially available electrospun nylon nanofibers. The growth of ZnO was performed by a hydrothermal technique and for the first time on commercial electrospun veils. The growth step was optimized by adopting a procedure with the refresh of growing solution each hour of treatment (Method 1) and with the maintenance of a specific growth solution volume for the entire duration of the treatment (Method 2). The overall treatment time and volume of solution were also optimized by analyzing the morphology of ZnO nanostructures, the coverage degree, the thermal and mechanical stability of the obtained decorated electrospun nanofibers. In the optimal synthesis conditions (Method 2), hexagonal ZnO nanorods with a diameter and length of 53.5 nm ± 5.7 nm and 375.4 nm ± 37.8 nm, respectively, were obtained with a homogeneous and complete coverage of the veils. This easily scalable procedure did not damage the veils that could be potentially used as toughening elements in composites to prevent delamination onset and propagation. The presence of photoreactive species makes these materials ideal also as environmentally friendly photocatalysts for wastewater treatment. In this regard, photocatalytic tests were performed using methylene blue (MB) as model compound. Under UV light irradiation, the degradation of MB followed a first kinetic order data fitting and after 3 h of treatment a MB degradation of 91.0% ± 5.1% was achieved. The reusability of decorated veils was evaluated and a decrease in photocatalysis efficiency was detected after the third cycle of use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.