Abstract

Methods to attach polypeptides to lipid bilayers are often indirect, ineffective and can represent a substantial bottleneck in the formation of functionalized lipid-based materials. Although the polyhistidine tag (his-tag) has been transformative in its simplicity and efficacy in binding to immobilized metals, the successful application of this approach has been challenging in physiological settings. Here we show that lipid bilayers containing porphyin-phospholipid that is chelated with cobalt, but not other metals, can effectively capture his-tagged proteins and peptides. The binding follows a Co(II) to Co(III) transition and occurs within the sheltered hydrophobic bilayer, resulting in essentially irreversible attachment in serum or in million-fold excess of competing imidazole. Using this approach we anchored homing peptides into the bilayer of preformed and cargo-loaded liposomes to enable tumour-targeting without disrupting the bilayer integrity. As a further demonstration, a synthetic HIV-derived protein fragment was bound to immunogenic liposomes for potent antibody generation for an otherwise non-antigenic peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.