Abstract

Nanoparticle synthesis was demonstrated via functionalization-induced self-assembly (FISA) of block copolymers using Suzuki-Miyaura cross-coupling. In situ self-assembly was triggered in organic media by the progressive installation of solvophobic pendant groups onto an initially soluble diblock copolymer, rendering the reactive block insoluble and causing the formation of spherical polymeric micelles. Self-assembly was found to depend on the percent functionalization (f%), where after a critical threshold micelles were accessible that increased in size with increasing f% values. We found the chemical nature of the installed functional group to be crucial for conducting FISA and for controlling the solution morphology, with relatively solvophilic adducts remaining as unimers and increasingly solvophobic adducts trending toward larger micelles, from ca. 40 to 100 nm in diameter. The core and corona of the anticipated micellar structure were visualized using fluorine mapping through electron energy loss spectroscopy, in conjunction with FISA achieved through pendent trifluorophenyl functionality. This work establishes FISA as a new, versatile synthetic strategy to create nanoparticles having tunable morphologies with potential application as molecular payload delivery vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.