Abstract

Due to difficulties with scalability and practical utilization, Si/graphene composites are not yet used as anodes for commercially available lithium-ion batteries. In this paper, we report an accessible and cost-effective ball-milling route to synthesize Si and graphene composites. By introducing amino- and carboxyl-groups, covalent linkage between Si nanoparticles and graphene is created, which solves serious issues of hybrids like poor dispersion and weak connection. This composite features a unique structure, where Si nanoparticles are uniformly attached to the surface or embedded into the inter-layers of the graphene. When used as anodes of lithium-ion batteries, this composite can retain a reversible capacity of 1516.23 mAh g−1 after 100 cycles at 100 mA g−1. It also exhibited excellent ultra-long-term cycling stability and high rate performance. The electrochemical performance is superior to most reported Si/graphene composites without chemical bonds at the interface, which indicates that covalent bonding can effectively inhibit the irreversible sliding of Si nanoparticles. In addition, EIS measurement had revealed a lower transfer resistance and faster Li-ions diffusion of Si@APTES/f-Gr, suggesting the integrity of graphene after functionalization. The proposed functionalization-assisted ball-milling approach, therefore, probably enables the large-scale production of Si/Graphene as anodes in high-performance batteries in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.