Abstract

Abstract. Photooxidation of volatile organic compounds (VOCs) produces condensable oxidized organics (COOs) to yield secondary organic aerosol (SOA), but the fundamental chemical mechanism for gas-to-particle conversion remains uncertain. Here we elucidate the production of COOs and their roles in SOA and brown carbon (BrC) formation from m-xylene oxidation by simultaneously monitoring the evolution of gas-phase products and aerosol properties in an environmental chamber. Four COO types with the distinct functionalities of dicarbonyls, carboxylic acids, polyhydroxy aromatics/quinones, and nitrophenols are identified from early-generation oxidation, with the yields of 25 %, 37 %, 5 %, and 3 %, respectively. SOA formation occurs via several heterogeneous processes, including interfacial interaction, ionic dissociation/acid–base reaction, and oligomerization, with the yields of (20 ± 4) % and (32 ± 7) % at 10 % and 70 % relative humidity (RH), respectively. Chemical speciation shows the dominant presence of oligomers, nitrogen-containing organics, and carboxylates at high RH and carboxylates at low RH. The identified BrC includes N-heterocycles/N-heterochains and nitrophenols, as evident from reduced single scattering albedo. The measured uptake coefficient (γ) for COOs is dependent on the functionality, ranging from 3.7 × 10−4 to 1.3 × 10−2. A functionality-based kinetic framework is developed to predict SOA production from the observed concentrations and uptake coefficients for COOs, which reproduces the measurement from m-xylene oxidation. Our results reveal that photochemical oxidation of m-xylene represents a major source for SOA and BrC formation under urban environments, because of its large abundance, high reactivity with OH, and high yields for COOs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call