Abstract

The conjugative transposon Tn916 was determined to be functional in Paenibacillus larvae in regard to expression of tetracycline resistance and conjugative transfer. Expression of erythromycin resistance, using Tn916ΔE, was also observed. Conjugative transfer experiments employing Paenibacillus popilliae strains Tc1001 and Em1001 as transposon donors and experiments using different P. larvae subspecies or different transposon-containing strains demonstrated interspecies and intraspecies transfer occurred for Tn916 and Tn916ΔE. Southern hybridization analysis of several Tn916-containing P. larvae isolates showed that the transposon randomly inserted into the bacterial chromosome with an indication that hot spot insertion had occurred. Hybridization analysis indicated single-copy insertion of Tn916 into the genome predominated. However, selection of multiple-resistant isolates (i.e., isolates containing Tn916 and Tn916ΔE) demonstrated that multiple copies of the transposon could coexist in the bacterial genome. Growth of transposon-containing isolates in broth medium in the absence of selective antibiotic pressure showed that Tn916 and Tn916ΔE were stably maintained in the bacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.