Abstract

Abstract The effect of high-pressure treatment (350 MPa, 6 min, 20 °C) combined with sodium chloride (1.5–3.0%) and phosphates (0.25–0.5%) on the texture, water retention, color and thermal properties was assessed in pork meat batters. A principal component analysis was used to identify the relationship between thermal denaturation and the functional properties of pork meat proteins. The hardening effect of high pressure was correlated with the appearance of a high-pressure-induced myofibrillar protein structure. The structure was destabilized by sodium chloride and phosphates, which counteracted the high-pressure effect on pork batter texture. Cooking yield and water-holding capacity were improved by the interaction between sodium chloride and phosphates under pressure. The interaction between high pressure, sodium chloride and phosphates also changed the color of the cooked pork meat batters. The modifications of these technological properties could be related to protein denaturation through the effects of high pressure, salt, phosphates and the appearance of a salt-induced component. Industrial relevance High-pressure treatment can produce low-salt and polyphosphate-free batters due to synergetic effects on texture and water-holding capacity. Moreover, the application of high pressure to meat products at high ionic strength does not affect the products' texture and water binding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.