Abstract

Pea protein isolate (PPI), a high-concentration protein ingredient derived from peas, is increasingly utilized in food applications, including beverages, meat or dairy alternatives, and baked goods. The protein extraction process typically used to manufacture PPI renders the protein highly denatured, which can have a negative impact on its functionality. Therefore, it is critical to understand how to prepare and utilize PPI to maximize its functionality. The current study evaluates the effect of select reconstitution conditions on the structure and functionality of PPI, across a range of protein concentrations (4%-10%) relevant to a variety of food applications. Temperature during reconstitution with water and hydration time impacted both protein hydration and its functionality. Increasing reconstitution temperature from 20 to 60°C and increasing hydration time from 10 to 40min decreased PPI particle size in solution and increased PPI solubility. Viscosity of PPI solutions also increased with mild heating and longer hydration time, whereas their flow behavior was highly dependent on protein concentration. Experimental data demonstrates that reconstitution conditions have a significant impact on PPI functionality. These findings can help food formulators develop high-quality food products that utilize PPI as a functional ingredient. PRACTICAL APPLICATION: Protein in commercially available pea protein isolates (PPIs) is usually highly denatured, and thus, it is important to find ways to maximize its functionality in practical applications. The findings of this study inform food scientists how to leverage PPI at various protein concentrations with optimal reconstitution conditions to develop high-quality products. Generally, mild heating and longer hydration times improve PPI functional performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.