Abstract

A salient feature of skeletal muscles is their ability to take up an applied slack in a microsecond timescale. Behind this fast adaptation is a collective folding in a bundle of elastically interacting bistable elements. Since this interaction has a long-range character, the behavior of the system in force and length controlled ensembles is different; in particular, it can have two distinct order-disorder-type critical points. We show that the account of the disregistry between myosin and actin filaments places the elementary force-producing units of skeletal muscles close to both such critical points. The ensuing "double criticality" contributes to the system's ability to perform robustly and suggests that the disregistry is functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.