Abstract
Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes.
Highlights
Ultrafine fibers, called “nanofibers” are a unique nanomaterial because of the nanoscaled dimensions in the cross-sectional direction and the macroscopic length of the fiber axis.nanofibers have both the advantages of functionality due to their nanoscaled structure and the ease of manipulation due to their macroscopic length
The functionalities of the nanofibers or nanofibrous membranes are based on their nanoscaled-size, high specific surface area, and high molecular orientation, and they can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers
This review describes our fundamental studies on controlling of fiber diameter, surface chemistry and topology, and internal structure of the nanofibers by electrospinning and highlights our efforts toward the applications of nanofibrous membranes such as ion-exchangers, air filters, and antimicrobial materials
Summary
Ultrafine fibers, called “nanofibers” are a unique nanomaterial because of the nanoscaled dimensions in the cross-sectional direction and the macroscopic length of the fiber axis (see Figure 1) Nanofibers have both the advantages of functionality due to their nanoscaled structure and the ease of manipulation due to their macroscopic length. The functionalities of the nanofibers or nanofibrous membranes are based on their nanoscaled-size, high specific surface area, and high molecular orientation, and they can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This review describes our fundamental studies on controlling of fiber diameter, surface chemistry and topology, and internal structure of the nanofibers by electrospinning and highlights our efforts toward the applications of nanofibrous membranes such as ion-exchangers, air filters, and antimicrobial materials. D fiber-axis direction macroscale (>cm) cross-sectional direction nanoscale (~nm) ease of handling
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.