Abstract

Ajania purpurea is a small semi-shrub in the Asteraceae family. Its corolla is purplish red from the middle to the top, and its leaves and flowers are all fragrant. It can be introduced and cultivated as ornamental plants. In order to survive adversity, plants actively regulate the expression of stress response genes and transcripts. Alternative splicing is a common phenomenon and an important regulation mode of eukaryotic gene transcription, which plays an important role in various biological processes. In this study, four splice variants of the NST1 gene were identified from A. purpurea, and the molecular mechanism of NST1 alternative splice variants involved in abiotic stress was explored through bioinformatics, transgenics and paraffin sectionalization. The analysis of amino acid sequences showed that ApNST1.1 had alternative 5′splicing, ApNST1.2 had alternative 3′splicing and ApNST1 had the two splicing types. The main conclusions from studying transgenic tobacco seedlings and adult seedlings under abiotic stress were as follows: ApNST1, ApNST1.1 and ApNST1.3 showed salt tolerance at seedling stage, especially ApNST1.3. At the mature seedling stage, the stem height of ApNST1.1 increased significantly, and ApNST1.1 showed obvious salt tolerance, while ApNST1.2 showed obvious cold resistance. Compared to Super35S::GFP, the xylem of ApNST1 thickened by 94 μm, and the cell wall thickened by 0.215 μm. These results are of great significance to the breeding and application of ApNST1 to select splice variants with more resistance to abiotic stress, and to future study in this area. At the same time, they provide a new direction for A. purpurea breeding, and increase the possibility of garden applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call