Abstract

BackgroundInsect females undergo a huge transition in energy homeostasis after mating to compensate for nutrient investment during reproduction. To manage with this shift in metabolism, mated females experience extensive morphological, behavioral and physiological changes, including increased food intake and altered digestive processes. However, the mechanisms by which the digestive system responds to mating in females remain barely characterized. Here we performed transcriptomic analysis of the main digestive organ, the midgut, to investigate how gene expression varies with female mating status in Drosophila suzukii, a destructive and invasive soft fruit pest.ResultsWe sequenced 15,275 unique genes with an average length of 1,467 bp. In total, 652 differentially expressed genes (DEGs) were detected between virgin and mated D. suzukii female midgut libraries. The DEGs were functionally annotated utilizing the GO and KEGG pathway annotation methods. Our results showed that the major GO terms associated with the DEGs from the virgin versus mated female midgut were largely appointed to the metabolic process, response to stimulus and immune system process. We obtained a mass of protein and lipid metabolism genes which were up-regulated and carbohydrate metabolism and immune-related genes which were down-regulated at different time points after mating in female midgut by qRT-PCR. These changes in metabolism and immunity may help supply the female with the nutrients and energy required to sustain egg production.ConclusionOur study characterizes the transcriptional mechanisms driven by mating in the D. suzukii female midgut. Identification and characterization of the DEGs between virgin and mated females midgut will not only be crucial to better understand molecular research related to intestine plasticity during reproduction, but may also provide abundant target genes for the development of effective and ecofriendly pest control strategies against this economically important species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call